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       8.1   Case Studies in Personalized Cancer Medicine 

 A better understanding of the molecular genetics of tumors, together with the 
availability of molecularly targeted therapies, sets the foundation for “personalized 
cancer therapy,” tailoring treatment to the particular genetic alterations of a tumor 
in an individual. The opportunities and challenges from such an approach are 
illustrated by the following two cases. 

    8.1.1   A Young Man with a Recurrent Epithelioid 
Angiomyolipoma 

 A 24-year-old man presented with a recurrent epithelioid angiomyolipoma (EAML) 
 [  1  ] . Five months earlier, the patient had undergone a right radical nephrectomy with 
removal of a 24-cm EAML that ruptured during surgery. At the time of presentation, 
there was a 20-cm tumor with evidence of intratumoral hemorrhage (Fig.  8.1 ), and 
the patient’s hemoglobin was 3.8 g/dL. After transfusion, arterial embolization of 
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the tumor was attempted without success, and the patient continued requiring 5–7 
units of packed red blood cells weekly. The mass was compressing the small bowel, 
and total parenteral nutrition (TPN) became necessary. The patient’s performance 
status was very poor and he was deemed not to be a surgical candidate. Unlike 
angiomyolipomas (AMLs), EAMLs exhibit an aggressive behavior and metastasize, 
and there is no standard medical therapy  [  2  ] . Hospice placement was 
recommended.  

 However, the patient had familial tuberous sclerosis complex (TSC). TSC is a 
syndrome that results from germline mutations in the eponymic genes,  TSC1  and 
 TSC2   [  3  ] . The  TSC1  and  TSC2  genes encode proteins that form a protein complex 
TSC1/TSC2  [  4,   5  ]  that functions as a negative regulator of mammalian target of 
rapamycin complex 1 (mTORC1)  [  6  ] . The TSC1 protein is necessary for the 
stabilization of TSC2  [  7  ] , and the TSC2 protein functions as a GTPase-activating 
protein (GAP) toward the small GTPase Ras homologue enriched in brain (Rheb) 
 [  8–  12  ] . Inactivation of TSC1/TSC2 results in a Rheb-dependent activation of mam-
malian target of rapamycin complex 1 (mTORC1)  [  8–  14  ] , and mTORC1 is active in 
tumors from TSC patients  [  15  ] . 

 Because the patient had TSC and since  TSC1  and  TSC2  function as two-hit tumor 
suppressor genes, it was likely that the event initiating tumor development was the 
loss of the remaining wild-type allele. This would result in constitutive mTORC1 
activation, and high level of mTORC1 activity was observed in the EAML  [  1  ] . 
Thus, we speculated that the patient may benefi t from treatment with an mTORC1 
inhibitor. In addition, while EAMLs differ from benign AMLs, benign AMLs seem 
to be responsive to sirolimus, the prototype mTORC1 inhibitor  [  16  ] . Sirolimus was 
started and sirolimus dosing was adjusted so as to maintain levels deemed to be 
therapeutic  [  1  ] . Within 72 h, intratumoral bleeding stopped and no further transfu-
sions were required. The patient had substantial improvement clinically and TPN 
was discontinued. Two years after the initial presentation, the patient continues on 
sirolimus, and the tumor remains under control (Fig.  8.1 ).  

  Fig. 8.1    EAML in TSC patient. CT scans (with or without contrast) at presentation and following 
treatment with sirolimus       
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    8.1.2   A Young Woman with a Papillary 
Type 2 Renal Cell Carcinoma 

 A 24-year-old woman presented with a 45-cm left renal mass  [  17  ] . The tumor was 
resected, and this required a partial pancreatectomy, a splenectomy, and a partial 
colectomy. Histologically, the tumor was a papillary renal cell carcinoma type 2 
(pRCC-2). The tumor invaded into the pancreas and there were multiple lymph 
nodes involved. One month after the surgery, a CT scan showed several nonvisceral 
metastases that were increasing in size measuring up to 3 cm in diameter. 
Temsirolimus, which in a phase III trial of histologically unselected renal cell carci-
noma (RCC) patients had shown unrestricted activity  [  18,   19  ] , was begun. Three 
months later, metastases remained stable. 

 The presentation with a pRCC-2 at 24 was unusual. The patient did not have a 
family history of malignancy, but genetic testing was recommended. An increased 
predisposition to pRCC-2 has been described in the context of hereditary leio-
myomatosis and renal cell cancer (HLRCC)  [  20  ] . HLRCC patients typically develop 
leiomyomas in the skin and uterus. There were no cutaneous leiomyomas, but the 
patient had uterine fi broids. The gene responsible for HLRCC is fumarate hydratase 
( FH )  [  21,   22  ] .  FH  sequencing from peripheral blood mononuclear cell DNA 
revealed a novel mutation. The mutation was a missense mutation resulting in the 
substitution of an aspartate at position 341 for an asparagine. The aspartate residue 
was evolutionarily conserved, and the mutation was nonconservative suggesting 
that it may impair function. 

 Like the  TSC1  and  TSC2  genes,  FH  functions as a two-hit tumor suppressor gene 
 [  20 – 23  ] , and sequencing studies of the pRCC-2 tumor revealed loss of heterozygos-
ity (LOH)  [  17  ] . Furthermore, FH enzymatic activity was absent in the tumor  [  17  ] . 
FH is an essential enzyme of the tricarboxylic acid (TCA) cycle (also referred to 
as the Krebs cycle), and disruption of FH function truncates the cycle leading to the 
accumulation of intermediates  [  24,   25  ] . The TCA cycle is essential for mitochon-
drial ATP production, and interruption of the cycle should markedly reduce ATP 
generation by the mitochondria. To meet the ATP demands of the cell, glucose 
uptake and glycolysis rates are increased  [  25–  28  ] . 

 Given these fi ndings, the patient was evaluated with a 2-deoxy-2-( 18 F)fl uoro- d -
glucose ( 18 FDG)-PET scan, which is not recommended for routine assessment of 
RCC. Five months after the initiation of temsirolimus, a PET/CT scan showed 
diffuse  18 FDG uptake throughout the abdomen and pelvis consistent with peritoneal 
carcinomatosis. The size of the implants was small, and they may have been missed 
by CT alone. Ominously, a dilated loop of small bowel was observed concerning 
for an impending small bowel obstruction. Treatment options were reevaluated. 

 There are no established therapies for pRCC-2 in HLRCC patients. The patient 
may be treated with small molecule kinase inhibitors such sunitinib or sorafenib, 
which are approved for advanced RCC, but whether sunitinib and sorafenib are effective 
against non-clear-cell RCC is undetermined. Furthermore, inasmuch as sporadic 
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pRCC-2 lack  FH  mutations  [  29,   30  ] , sporadic and familial pRCC-2 are likely to 
represent altogether different entities. 

 We sought to exploit the knowledge we had acquired about the tumor. FH-defi cient 
cells have a high demand for glucose  [  26–  28  ]  and the tumor was intensely FDG 
avid. pRCC-2-derived FH-defi cient tumor cells are unable to grow in 50 mg/dL 
glucose concentrations, which support the growth of other tumor cell lines  [  26  ] . 
Thus, FH-defi cient tumor cells would be expected to be exquisitely sensitive to 
glycolytic inhibitors, such as 2-deoxy- d -glucose (2DG). 2DG is very similar to FDG 
and, like FDG, should accumulate in tumor cells, where it would competitively 
inhibit the glycolytic enzyme, glucose-6-phosphate isomerase. 

 2DG was obtained for compassionate use, and 2DG dosing was determined 
based on two phase I clinical trials, which showed overall similar results  [  31,   32  ] . 
While  FH  loss in the tumor may make the tumor exquisitely sensitive to 2DG, given 
the heterozygous state of the patient, she could be at increased risk for toxicities. 
Furthermore, as the FH enzyme is a homotetramer  [  33  ] , the possibility existed that 
FH activity in normal cells may not be 50% (as would be expected from the loss of 
one  FH  copy), but much lower. Should the activity of the complex be compromised 
by the incorporation of a single mutant FH protein into the tetramer, FH activity 
could be  as low as 20%. 

 To gain insight into the effects of the mutation, we evaluated the role of Asp 341  in 
a previously reported FH tetramer crystal structure (Protein Data Bank ID 3E04). 
Asp 341  formed part of the interface between FH monomers and was involved in 
an intramolecular interaction with Lys 337 . Mutation of Asp 341  to Asn would leave 
Lys 337  unpaired, which, if anything, should destabilize the complex. To determine 
experimentally whether the FH Asp341Asn  protein could be incorporated into 
complexes, FH-defi cient pRCC-2 tumor cells  [  26  ]  were reconstituted with either 
wild-type or mutant FH protein. Whereas wild-type FH led to the formation of 
tetrameric complexes, tetrameric complexes did not form in cells expressing 
FH Asp341Asn . These data were reassuring and suggested that FH Asp341Asn  did not 
function as a dominant negative. 

 Nonetheless, because the patient was heterozygous, 2DG was started at 1/8th of 
the target dose (8 mg/kg PO q.d.). The patient tolerated the fi rst dose well, and 
given concerns about an impending small bowel obstruction, 2DG was rapidly 
escalated, within 8 days, to the target dose (63 mg/kg). There were no toxicities 
except for grade I electrolyte abnormalities. However, 1 week after the target dose 
was reached, the small bowel obstruction progressed to a complete obstruction, 
which was not amenable to surgical intervention. 2DG was stopped and the patient 
was started on TPN. 

 We sought to understand the lack of 2DG activity and evaluated the effects of 
2DG on FH-defi cient pRCC-2 tumor cells in vitro. FH-defi cient cells were cultured 
with near-physiological glucose concentrations (150 mg/dL) and supplemented 
with 10% 2DG for 4 h a day. Based on PK studies  [  32  ] , such a regimen should 
mimic drug exposure in the patient. While 2DG slowed the proliferation of 
FH-defi cient tumor cells, the effect was quite modest  [  17  ] . We speculated that a 
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more sustained exposure may have a greater effect and found that continuous 
treatment with 10% 2DG abrogated cell proliferation. 

 After a discussion with the FDA and the IRB, the frequency of 2DG administra-
tion was increased, initially to every 8 h and subsequently to every 6 h. To minimize 
competition, carbohydrates were held from the parenteral nutrition. 2DG was given 
while the patient was hospitalized and on telemetry. On this regimen, the patient 
developed symptoms of hypoglycemia (blurred vision, tachycardia, clamminess, 
etc.), but there were no serious toxicities. After a week on 2DG, and following a 
period >24 h from the last dose (to avoid competition), a PET/CT was performed. 
Unfortunately, no evidence of antitumor activity was observed. 

 To evaluate this further, the effects of 2DG on the metabolism of FH-defi cient 
tumor cells in the laboratory were explored. Whereas at 50% 2DG concentrations, 
glycolysis was suppressed, glycolysis was largely unaffected by 10% 2DG. However, 
10% 2DG had a modest effect on ATP levels. While the drop in ATP was quite small 
(~10%), this was suffi cient to activate the master energy regulator, AMP-activated 
protein kinase (AMPK). AMPK has been previously shown to be suffi cient to inhibit 
mTORC1  [  34  ] , and 10% 2DG led to an AMPK-dependent inhibition of mTORC1 
in FH-defi cient pRCC-2 tumor cells  [  17  ] . 

 These results explained why 10% 2DG inhibited cell proliferation in vitro 
and provided an explanation for the discrepancy between the effects on FH-defi cient 
cells in culture and those in the patient. The patient had been previously treated 
with an mTORC1 inhibitor, to which the tumor had become resistant, and thus, 
should the effect of 2DG be dependent on mTORC1 inhibition, 2DG would be 
expected to have no effect on the tumor. 

 In summary, an unusual presentation led to the identifi cation of a novel germline 
 FH  mutation. Studies in the laboratory determined that the mutation was a loss-
of-function mutation and that in the tumor, the wild-type allele was lost and FH 
activity was absent. This defect was exploited for diagnostic and therapeutic pur-
poses. An inhibitor of glycolysis was evaluated, and dosing was adjusted for the 
heterozygous state of the patient and the possibility that mutant FH functioned as a 
dominant negative. The drug was shown to be active against FH-defi cient pRCC-2 
tumor cells in culture, and the 2DG regimen was optimized based on in vitro 
studies. Finally, insight was obtained into the mechanism of 2DG action at phar-
macologically relevant concentrations, and an explanation was obtained for the 
discrepancy between the in vitro studies and the results in the patient. More 
broadly, this represents the fi rst attempt to inhibit glycolysis in a tumor with a 
genetic defect in an enzyme of the Krebs cycle, and these type of tumors may be 
most suitable for the evaluation of glycolytic inhibitors in cancer.   

 These two reports illustrate attempts at personalized cancer therapy. In both 
instances, the treatment was informed by the molecular characteristics of the tumor. 
The mutations exploited were germline mutations in two-hit tumor suppressor 
genes. As the fi rst hit was already present in all cells, the loss of the corresponding 
wild-type allele is likely to have been the tumor-initiating event, and as a consequence, 
tumors developed early in life. Tumor-initiating events are likely to engender a 
greater dependency in tumor cells than subsequent mutations, and this may explain 



166 J. Brugarolas

the sustained benefi t of mTORC1 inhibitors in the fi rst patient. While only a small 
percentage of renal tumors are accounted for by germline mutations, the principles 
governing the use of molecular genetic information for therapeutic purposes are 
similar and therefore applicable to sporadic tumors.   

    8.2   From Genes to Drugs: A Historical Perspective 

    8.2.1   The von Hippel–Lindau Pathway 

 Up until 2005, a single drug, interleukin-2, had been approved for RCC by the 
FDA. From 2005 to 2011, six drugs (or drug combinations) reached marketing 
approval. These drugs belong to two classes, inhibitors of angiogenesis and 
mTORC1 inhibitors  [  35  ] . The large expansion in the armamentarium against RCC 
has its roots in a greater understanding of the molecular genetics and the biology of 
RCC, particularly of clear-cell RCC (ccRCC)  [  36  ] . In 1993, the gene von Hippel–
Lindau ( VHL ) was identifi ed as the gene responsible for conferring an inherited 
predisposition to ccRCC development  [  37  ] . Subsequently,  VHL  was found to be 
frequently mutated in sporadic ccRCC  [  38  ] .  VHL  is inactivated either genetically or 
epigenetically  [  39  ]  in over 90% of sporadic ccRCCs  [  40  ] . 

 Over the following decade, the function of the VHL protein (pVHL) was eluci-
dated. pVHL was determined to be an essential component of an oxygen signaling 
pathway. When pVHL is inactive, genes normally induced under conditions of 
hypoxia become constitutively expressed  [  41  ] . In  VHL -defi cient cells, the hypoxia-
inducible factor (HIF) transcription factor, which would normally be active only 
during hypoxia, was constitutively active  [  42  ] . HIF refers to a family of heterodimeric 
transcription factors (HIF-1, HIF-2, and HIF-3) composed of a labile   a   subunit and 
a stable   b   subunit. pVHL acts as the substrate recognition subunit of an E3 ubiquitin 
ligase complex that targets HIF-  a   subunits for degradation  [  42–  46  ] . In the presence 
of oxygen, molecular oxygen is used by a family of prolyl hydroxylases to hydroxylate 
HIF-  a   at specifi c prolyl residues  [  47,   48  ] . This creates high-affi nity binding sites for 
pVHL leading to HIF-  a   ubiquitylation and degradation  [  49–  51  ] . When oxygen lev-
els are low, prolyl residues remain unmodifi ed, and HIF-  a   subunits escape pVHL 
recognition, interact with   b   subunits, and form an active heterodimeric transcription 
factor  [  52  ] . However, when pVHL is inactive, HIF-  a   subunits accumulate regard-
less of oxygen levels, leading to increased HIF activity and the expression of, among 
others, vascular endothelial growth factor A (VEGF-A or VEGF) and platelet-derived 
growth factor   B   (PDGF-  B  )  [  53  ] , which are implicated in angiogenesis and may 
explain the vascular nature of ccRCC tumors. 

 The importance of  VHL  in tumor suppression was further established through 
reconstitution experiments. Reintroduction of wild-type  VHL  into  VHL -defi cient RCC 
cells inhibited tumor formation in xenograft assays  [  54  ] . Using similar approaches, 
HIF-2  a   was shown to be both necessary and suffi cient for tumor growth downstream 
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of pVHL  [  55–  57  ] . HIF-1  a   function in ccRCC is less clear  [  58–  60  ] . Somatic loss-of-
function mutations have been found in  HIF-1   a   in ccRCC  [  61,   62  ] , and while they are 
rare,  HIF-1   a   has been recently proposed to act as a tumor suppressor  [  63  ] . Further 
studies are needed to clarify the role of HIF-1. 

 Overall, these fi ndings led to the notion that interfering with VEGF and PDGF-
  B   signaling downstream of HIF may affect ccRCC development and laid the founda-
tion for the evaluation of bevacizumab, a VEGF neutralizing antibody  [  64  ,     65–  67  ] . 
Similarly, small molecule inhibitors of VEGF receptor-2 (VEGFR2) and PDGF 
receptor-  b   (PDGFR  b  ) including sorafenib, sunitinib, and pazopanib, were evaluated 
against ccRCC and found to be effective  [  68–  70  ] . 

 To date, most efforts at targeting the pVHL pathway have focused on the 
development of drugs inhibiting angiogenesis. However, other pVHL and HIF 
functions may be important for tumor development  [  36  ] . Among the most striking 
effects of HIF are its effects on metabolism  [  53  ] . HIF-1 activation under conditions 
of hypoxia reroutes ATP production from oxidative phosphorylation (which requires 
oxygen for electron disposal) to glycolysis, which can occur anaerobically  [  53  ] . 
Interestingly, recent experiments in mice showed that acute  VHL     disruption in 
hepatocytes, which results in an accumulation of lipid reminiscent of ccRCC  [  71–
  75  ] , causes a HIF-dependent inhibition of mitochondrial respiration  [  75  ] .  VHL  
loss suppresses glucose and ketone production by the liver leading to the death of 
mice within days  [  75  ] . The effects of  VHL  inactivation are abrogated by simulta-
neous disruption of  HIF-1  b   , which is required for both HIF-1 and HIF-2 function 
 [  75  ] . Probably as a result of a blockade in mitochondrial oxygen utilization, par-
tial oxygen pressures in  VHL -defi cient livers are increased  [  75  ] . Thus, no other 
pathways exist in hepatocytes that allow oxygen utilization when HIF is active. The 
relative contribution of HIF-1  a   and HIF-2  a   to this process remains to be deter-
mined, but HIF-2 may play an important role  [  73  ] . Should a similar inhibition of 
mitochondrial respiration be found in ccRCC, it would portend a dependency on 
glycolysis for energy generation which may be amenable to therapeutic 
exploitation. 

 Vulnerabilities resulting from  VHL  inactivation in ccRCC have also been explored 
through more pragmatic approaches. W.G. Kaelin and colleagues conducted a 
synthetic lethal RNAi screen to identify kinases that, when downregulated, reduced 
the fi tness of  VHL -defi cient cells  [  76  ] . shRNAs targeting 15% of the human kinome 
were evaluated in  VHL -defi cient (and reconstituted) RCC tumor cells. Knockdown 
of CDK6, cMET, and MEK1 preferentially affected  VHL -defi cient RCC cell lines. 
Because kinases are amenable targets for drug development, the fi ndings could have 
therapeutic implications. Furthermore, a small molecule CDK6 inhibitor showed 
increased activity against  VHL -defi cient cells, and this is important, as interfering 
with gene expression may have effects beyond enzymatic inhibition. 

 A.J. Giaccia and colleagues reported a chemical-genetic screen to identify com-
pounds preferentially targeting  VHL -defi cient cells  [  77  ] . Among 64,000 compounds 
screened, several were identifi ed with increased activity (in the low micromolar 
range) against  VHL -defi cient cells.  
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    8.2.2   The mTORC1 Pathway 

 Research we conducted provided a rationale for targeting mTORC1 in RCC  [  78  ] . 
Similarities between VHL and TSC syndromes (and the corresponding genetically 
engineered mouse models) led us to hypothesize that a functional overlap existed 
between pVHL and the TSC1/TSC2 complex  [  78  ] . We found that like pVHL loss, 
disruption of TSC1/TSC2 resulted in HIF-1 activation and increased VEGF 
production and that the effects were reverted in part by mTORC1 inhibition  [  78  ] . 
Parenthetically, deregulation of HIF and VEGF in response to mTORC1 activation 
appears to be a common feature of familial hamartoma syndromes  [  79  ] . 

 mTORC1 includes mTOR, an atypical protein kinase with a kinase domain with 
structural similarities to phosphatidylinositol 3-kinase (PI3K), and regulatory-
associated protein of mTOR (Raptor), an adaptor protein that plays an important 
role in determining substrate specifi city  [  80–  82  ] . Mammalian lethal with Sec13 
protein 8 (mLST8) also forms part of this complex  [  82,   83  ] , but mLST8 is dispens-
able for mTORC1 activity, at least during development  [  84  ] . In addition, other regu-
latory proteins associate with and inhibit mTORC1, proline-rich Akt substrate of 
40 kDa (PRAS40)  [  85,   86  ] , and DEP domain-containing TOR-interacting protein 
(Deptor)  [  87  ] . 

    8.2.2.1   Regulation of Protein Translation by mTORC1 

 mTORC1 plays a critical role in the regulation of cell growth (cell mass), which 
at least in part results from increasing protein translation (Fig.  8.2 ). The best 
characterized substrates of mTORC1 are implicated in regulating protein synthesis, 
S6 kinase 1 (S6K1)  [  88  ]  and eukaryotic initiation factor 4E (eIF4E)-binding protein 
1 (4E-BP1). Phosphorylation of S6K1 by mTORC1 contributes to its activation, and 
S6K1 in turn phosphorylates the small ribosomal subunit protein S6, eIF4B, pro-
grammed cell death 4 (PDCD4), and cap-binding protein 80 (CBP80)  [  88,   89  ] . 
4E-BP1 phosphorylation by mTORC1 leads to its dissociation from the 5  ¢   cap of 
mRNAs, which serves as a launching pad for translation initiation  [  90  ] . The disen-
gagement of 4E-BP1 allows eIF4G binding and the assembly of a translation preini-
tiation complex that will scan the mRNA untranslated region until the start codon, 
at which point protein translation will begin.   

    8.2.2.2   Transcription Factor Regulation by mTORC1 

 Besides its role in the regulation of protein translation, mTORC1 has also been 
implicated in the regulation of gene expression (Fig.  8.2 ). Several transcription factors 
are regulated by mTORC1. mTORC1 regulates HIF-1  [  78,   91–  96  ] , and while the 
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precise molecular mechanism remains to be fully elucidated  [  97–  99  ] , this provides 
a link between trophic functions and angiogenesis. In addition, mTORC1 regulates 
sterol regulatory element-binding protein 1 (SREBP1)  [  98,   100  ] . mTORC1 promotes 
the nuclear localization of the mature form of SREBP1 coupling thereby lipogenesis 
to protein synthesis and cell growth. 

 Recently, we discovered another transcription factor regulated by mTORC1, the 
transcription factor EB (TFEB)  [  101  ] . mTORC1 coordinately regulates the phospho-
rylation and nuclear localization of TFEB. TFEB is a basic helix-loop-helix (bHLH) 
transcription factor of the Myc family, microphthalmia transcription factor 
(MITF) subfamily, and a master regulator of lysosomal biogenesis  [  102  ] . TFEB 
has also been recently implicated in autophagy  [  103  ] . mTORC1 promotes TFEB 
nuclear localization, and TFEB is responsible for a large percentage of genes 
whose expression is induced by mTORC1  [  101  ] . Interestingly, the  TFEB  gene is 
translocated in an uncommon type of renal tumor that occurs primarily in children 
and young adults. In these translocation carcinomas, which may also involve the 
closely related family member  TFE3 ,  TFEB  is constitutively activated  [  104,   105  ] . 

  Fig. 8.2    Cross talk between pVHL and mTORC1 pathways in ccRCC. In  red , mTOR complexes 
and PI3K; in dark  blue , tumor suppressor proteins mutated in ccRCC; ribbon diagram, REDD1 
structure (reprinted with permission from Vega-Rubin-de-Celis et al.  Biochemistry  49 (11):2491–
2501; Copyright 2010, American Chemical Society)       
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Given that TFEB nuclear localization is regulated by mTORC1, should this be the 
case also in translocation carcinomas, mTORC1 inhibitors may be highly 
effective.   

    8.2.3   Interplay Between pVHL and mTORC1 Pathways 

 Arguably, the two most important pathways in ccRCC pathogenesis are those 
governed by pVHL and mTORC1. However, little is known about the interplay 
between these two pathways. We have found that regulated in development and 
DNA damage response 1 (REDD1), a negative regulator of mTORC1  [  106  ] , links 
pVHL and mTORC1 pathways in ccRCC  [  107  ]  (Fig.  8.2 ). REDD1 is physiologi-
cally induced by hypoxia  [  108  ]  and REDD1 is suffi cient to inhibit mTORC1  [  109  ] . 
mTORC1 inhibition under hypoxia allows cells to shift resources from protein 
translation, an energy-consuming process, to more pressing activities.While 
REDD1 is broadly implicated in mTORC1 regulation by hypoxia  [  106,   110–  112  ] , 
in some cell types, hypoxia signals are transduced to mTORC1 independently of 
REDD1  [  112  ] . 

 REDD1 expression is upregulated in the majority of ccRCC  [  107  ] . REDD1 is 
induced by both HIF-1  [  108  ]  and HIF-2  [  107  ] , and since REDD1 overexpression is 
suffi cient to inhibit mTORC1  [  106,   113  ] , these results present a paradox, particu-
larly since mTORC1 has been reported to be active in a large percentage of ccRCCs 
 [  114,   115  ] . Interestingly, strategies have evolved in tumors to disengage mTORC1 
from REDD1 control  [  107  ] . In some ccRCCs,  REDD1  is mutated, but the frequency, 
although comparable to that of  PTEN       , is rather low.  PTEN  loss may also uncouple 
mTORC1 from REDD1  [  107  ] . Another mechanism involves the inactivation of the 
TSC1/TSC2 complex, as REDD1-induced mTORC1 inhibition is TSC1/TSC2-
dependent  [  106  ] . Despite previous reports  [  116  ] , we recently discovered that 
 TSC1  is mutated and inactivated in sporadic ccRCC  [  107  ] . TSC1 inactivation 
blocks REDD1 action on mTORC1  [  106,   107  ] . In contrast, we did not fi nd muta-
tions in  TSC2   [  107  ] . Interestingly, mutations have also been reported in  mTOR  
 [  61,   117  ] . These mutations appear to selectively activate mTORC1 and may simi-
larly uncouple mTORC1 from REDD1  [  118  ] . However, even when taken together, 
all these mutations still account for a small percentage of ccRCCs, and how the 
remaining tumors maintain mTORC1 activity despite REDD1 upregulation is 
unclear. 

 Light may be shed into this problem by uncovering the molecular mechanism of 
REDD1 action. REDD1 has been proposed to function by binding to and sequestering 
14-3-3 proteins away from TSC2  [  119  ] . However, it is unclear how REDD1 would 
sequester 14-3-3 proteins, which are very abundant and interact with over 100 
proteins in cells  [  120  ] . In addition, structural and mutagenesis studies we con-
ducted show that the putative 14-3-3 binding site in REDD1 does not conform to 
any 14-3-3 binding sites known and that residues typically critical for 14-3-3 binding 
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are dispensable for REDD1 function  [  121  ] . Thus, how REDD1 inhibits mTORC1 
remains a mystery. The answer to this question may provide fundamental insights 
into ccRCC progression.  

    8.2.4   Targeting mTORC1 

 TOR was identifi ed on the basis of genetic  [  122  ]  and biochemical assays  [  123,   124  ]  
using rapamycin (also called sirolimus), a macrolide antibiotic with growth inhibitory 
properties. Rapamycin functions as an allosteric inhibitor. Rapamycin binds to 
FKBP12 (FK506-binding protein, MW of 12 kDa) and, as a complex, interacts with 
a region upstream of the kinase domain of mTOR, referred to as the FKBP12-
rapamycin binding (FRB) domain (Fig.  8.2 ). Interestingly, despite that mTOR is 
present in a second complex, mTORC2, for reasons that are not completely under-
stood, sirolimus does not bind to mTORC2  [  82,   125,   126  ] . However, prolonged 
exposure to sirolimus in some cell types results also in mTORC2 inhibition  [  127, 
  128  ] , possibly because mTOR becomes sequestered by sirolimus. 

 Two sirolimus analogues have been approved for treatment of advanced RCC, 
temsirolimus and everolimus. Both analogues differ from sirolimus by side chain 
substitutions at a single carbon atom of the macrolactone ring that is not directly 
involved in FKBP12 or mTOR binding. Thus, while these modifi cations alter the 
pharmacokinetic properties of the compound, the inhibition of mTORC1 by all 
three drugs is likely to be indistinguishable. Furthermore, temsirolimus is largely a 
sirolimus prodrug. Seventy percent of circulating drug levels following temsiroli-
mus administration are actually sirolimus  [  129,   130  ] , and we previously reported 
the treatment of a patient with RCC with sirolimus before temsirolimus became  
commercially available  [  131  ] . 

 Temsirolimus was evaluated in a phase III trial involving patients with previ-
ously untreated metastatic RCC of clear-cell and non-clear-cell types that were in 
a poor prognostic group as defi ned by modifi ed MSKCC criteria including metasta-
sis in multiple organs  [  18  ] . By comparison to interferon-  a  , temsirolimus improved 
median overall survival (OS) (10.9 vs. 7.3 months; HR for death, 0.73; 95% CI, 
0.58–0.92;  p  = 0.008). 

 Everolimus was evaluated in patients with metastatic ccRCC progressing to 
antiangiogenic therapy  [  132  ] . Most patients had received sunitinib or sorafenib, 
and approximately 25% had received both. In addition, over 50% of patients had 
also been treated with immunotherapy. Everolimus resulted in an improvement in 
median progression-free survival (PFS) of 2.1 months by comparison to placebo 
(1.9 vs. 4.0 months; HR for progression, 0.30; 95% CI, 0.22–0.40;  p  < 0.0001). 

 Both temsirolimus and everolimus exhibit a similar adverse effect (AE) profi le 
that includes, among the most serious AEs, pneumonitis. Other less serious, but more 
common AEs include stomatitis, hyperlipidemia, hyperglycemia, thrombocytope-
nia, and anemia  [  133  ] . While little is known about the pathogenesis of anemia, it 
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tends to be microcytic, and given the role of mTORC1 in protein translation, it may 
refl ect reduced hemoglobin synthesis. Whether this effect could have clinical applica-
tion, for instance in the treatment of sickle cell anemia, is unknown. 

 What determines responsiveness to mTORC1 inhibitors is unclear, but pre-
sumably only tumors with active mTORC1 would be responsive and this is 
supported by a small retrospective study  [  134  ] . However, at least as determined 
by phospho-S6 S235/236  (pS6 S235/236 ) levels, most RCCs appear to have increased 
mTORC1 activity  [  114,   115  ] . While pS6 S235/236  levels may be infl uenced by other 
signaling pathways besides mTORC1  [  135  ] , pS6 S235/236  levels tend to correlate well 
with pS6 S240/244  in ccRCC  [  107  ] . Interestingly, Pantuck et al. observed a correlation 
between pS6 S235/236  and Fuhrman grade  [  114  ] . This correlation could be explained 
by the fact that mTORC1 regulates ribosome biogenesis, a process that takes 
place in the nucleolus, and that nucleolar size is an important determinant of the 
Fuhrman grading scale. Indeed, nucleolar size is affected by mTORC1  [  136, 
  137  ] . This has several implications. First, nucleolar size (and perhaps Fuhrman 
grade) may serve as a pharmacodynamic indicator of mTORC1 activity. Second, 
the prognostic signifi cance of the Fuhrman grading scale may be due, at least in 
part, to mTORC1. Finally, since mTORC1 inhibitors reduce nucleolar size  [  137  ] , 
the assessment of Fuhrman grade could be affected by prior mTORC1 inhibitor 
therapy.  

    8.2.5   Uncovering Mechanisms of Resistance to mTORC1 
Inhibitors 

 To identify mechanisms of resistance to mTORC1 inhibitors, we opened a phase 
II clinical trial, “Neoadjuvant everolimus for advanced RCC before cytoreductive 
nephrectomy with correlative tumor studies” (NCT00831480). Patients presenting 
with metastatic RCC and a primary tumor in place who are eligible to undergo 
cytoreductive nephrectomy (CRN) will receive everolimus for 3–5 weeks, then 
undergo CRN, and subsequently receive everolimus until progression. The pri-
mary endpoint of the study is PFS at the end of the fourth month of everolimus 
treatment following CRN, and the trial is designed to provide an exceptional plat-
form to explore how resistance to mTORC1 inhibitors develops (Fig.  8.4 ). The pri-
mary tumor will be biopsied prior to everolimus initiation, tissue will be obtained at 
nephrectomy, and a metastatic site showing progression will be biopsied at that 
time. During nephrectomy, biopsies will be performed of the tumor prior to ligation 
of the renal artery so as to minimize confounding effects from tissue ischemia. In 
addition, in order to provide an adequate context for the interpretation of pharma-
codynamic studies in the tumor tissue, they will be integrated with measurements of 
circulating drug levels as well as pharmacodynamic analyses on peripheral blood 
mononuclear cells. Finally, everolimus will be continued for 24 h after the biopsy 
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of the metastasis. Should mTORC1 be active in the metastasis, we should be able 
to determine that this occurred despite mTORC1 inhibition in PBMCs and adequate 

circulating drug levels.   

    8.2.6   Novel Approaches to Targeting mTOR 

 Catalytic inhibitors that bind to the kinase domain of mTOR are being evaluated. 
These inhibitors more potently inhibit mTORC1 phosphorylation of 4E-BP1  [  138, 
  139  ] , and as a consequence may have greater effects on cell proliferation and tum-
origenesis  [  140–  144  ] . Unlike sirolimus analogues, these inhibitors also target 
mTORC2. mTORC2 shares with mTORC1, mLST8, and DEPTOR, but whereas 
mLST8 is dispensable for mTORC1 activity, mTORC2 requires mLST8  [  84  ] . In 
addition, mTORC2 function requires rapamycin-insensitive companion of mTOR 
(Rictor)  [  125  ]  and mSIN1  [  145  ] . 

 mTORC2 phosphorylates Akt  [  146  ] , serum- and glucocorticoid-regulated kinase 
(SGK)  [  147  ] , and several protein kinase C (PKC) isoforms  [  84  ] . Akt phosphoryla-
tion by mTORC2 at S 473  contributes to its activation, and Akt promotes survival and 
proliferation. Akt S473  phosphorylation is important for the phosphorylation of 
some substrates including forkhead box protein O1 (FoxO1) and FoxO3  [  84,   145  ] . 
Phospho-rylation of FoxO transcription factors by Akt sequesters them in the cyto-
sol where they are unable to activate gene expression and induce apoptosis  [  148  ] . 

 Several lines of evidence suggest that mTORC2 inhibition in RCC may be 
benefi cial. First, mTORC2 inhibition may downregulate Akt activity, and Akt 
appears to be phosphorylated in the majority of RCCs  [  114  ] . Second, mTORC1 is 
involved in several negative feedback loops that dampen growth factor receptor 
signaling when mTORC1 is active, and mTORC1 inhibition increases the levels of 
receptor tyrosine kinases  [  149  ]  and adaptor proteins  [  150–  153  ] . Increased growth 
factor receptor signaling with mTORC1 inhibitors may be offset, at least partially, 
by Akt inhibition. Finally, at least in a  TSC1  heterozygous background, experiments 
in mice suggest that FoxO proteins block renal tumor development  [  154  ] . Therefore, 
by inhibiting Akt, mTORC2 inhibitors may activate FoxO proteins and suppress 
RCC development. 

 Akt activation is also regulated by phosphorylation at T308, which is mediated by 
3-phosphoinositide-dependent kinase 1 (PDK1). In response to growth factor stim-
ulation, class Ia PI3Ks are recruited to sites of receptor phosphorylation via the 
p85 regulatory subunit, leading to the activation of the catalytic p110 subunit. p110 
is thereby brought into proximity to its lipid substrates at the plasma membrane 
resulting in the generation of the second messenger phosphatidylinositol-3,4,5-tris-
phosphate, which in turn recruits and activates PDK1  [  155,   156  ]  (see also Fig.  8.2 ). 
Because the kinase domain of mTOR is similar to that of PI3Ks, inhibitors are avail-
able that target not only mTOR (mTORC1 and mTORC2) but also PI3Ks, and this 
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may further reduce Akt activation and increase antitumor activity  [  157  ] . One such 
inhibitor, GSK2126458, which targets mTOR complexes and class I PI3Ks was 
recently shown in a fi rst-in-human trial that included 25 patients with previously 
treated RCC to result in two partial responses  [  158  ] . 

 Since reactivation of feedback loops following mTORC1 inhibition results not 
only in the activation of Akt but also of extracellular signal-regulated kinase (ERK) 
 [  159  ] , mTORC1 inhibitors are also being studied in combination with mitogen-
activated protein kinase/ERK kinase (MEK) inhibitors. Attempts have also been 
made to combine mTORC1 inhibitors with sorafenib and sunitinib, but these combi-
nations are poorly tolerated at full doses of each agent. In contrast, mTORC1 inhibi-
tors can be combined with bevacizumab at full doses, but there are no conclusive 
studies presently as to whether the combination is synergistic.   

    8.3   Uncovering New Targets with Genome Sequencing 

 By comparing tumor and normal genomes from the same patient, a list of somati-
cally acquired mutations can be compiled among which driver mutations are to be 
found. However, distinguishing “driver” from “passenger” mutations is challeng-
ing. Since the probability that random mutations be activating is very low (the num-
ber of possible changes that could be introduced in a protein-coding sequence that 
would enhance protein function is typically very small), gain-of-function mutations 
have a higher likelihood of being tumorigenic. However, loss-of-function muta-
tions, which represent the majority of mutations in tumors, are more diffi cult to 
interpret. The probability that a loss-of-function mutation is pathogenic may be 
increased if it is associated with LOH, but this criterion alone is not enough. 

 Genes that are recurrently mutated in tumors of a specifi c histology have a higher 
likelihood of driving tumor formation. Statistical analyses adjusted for multiple 
comparisons may single them out. In addition, while the mutation frequency of a 
particular gene in a specifi c tumor type may not be statistically signifi cant, in the 
context of other genes acting in the same pathway, the fi ndings may be signifi cant. 
Assuming that the pathway was linear, mutations at multiple levels would be 
expected not to confer a selective advantage and should be infrequently observed 
together. 

 In keeping with large scale recent studies, in possibly the fi rst whole genome 
sequence of a ccRCC to be reported  [  160  ] , approximately 6,500 somatically acquired 
mutations were identifi ed. There were 63 mutations in protein-coding genes (or 
splice sites) including a mutation in  VHL . Interestingly, there was no enrichment for 
mutations in protein-coding regions (which account for ~1% of the genome) sug-
gesting that other regions in the genome may be similarly important. 

 A strategy utilized by several groups, including ours, has been the search for 
recurrently mutated genes in small numbers of tumors. An analysis of seven ccRCCs 
by the Sanger Institute identifi ed polybromo 1 ( PBRM1 )  [  117  ] , a gene subsequently 
found to be mutated in 35% of ccRCCs, which encodes a component of a SWI/SNF 
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nucleosome remoding complex. The same group previously reported mutations in 
 SETD2 ,  KMD5C  ( JARID1C ), and  KMD6A  ( UTX ) in 1–3% of ccRCCs  [  61,   161  ] . 
Another study of seven ccRCC exome pairs that included follow-up sequencing of 
~80 chromatin remodeling genes in 96 samples identifi ed the following genes and 
mutation frequencies:  SETD2  12%,  MLL2  10%,  KDM5C  6%,  MLL  4%,  ARID1A  
4%,  ASH1L , and  KDM6A  1–2%  [  162  ] . Overall these data highlight the importance 
of chromatin remodeling in ccRCC and may offer opportunities for therapeutic 
intervention.   

 The sensitivity of RCC sequencing studies is limited however, by stromal con-
tamination. A potential avenue to increase mutation detection involves the study of 
human tumors growing in mice (referred herein as tumorgrafts). In tumorgrafts, 
human stroma is replaced by the host thereby eliminating normal human DNA 
contamination  [  163  ] . However, there are intrinsic challenges associated with 
genome sequencing efforts of tumorgrafts  [  164  ] . Overall, the number of mutations 
in protein-coding genes in ccRCC may be 40–80, and the number may increase in 
patients with a history of tobacco use. 

 Thus far, only two genes have been identifi ed in ccRCC with mutation fre-
quencies greater than 25%,  VHL  and  PBRM1 . This may make the development of 
molecularly targeted therapies broadly applicable to large number of patients diffi -
cult. However, genes may be integrated into pathways, and pathways may emerge 
that are more broadly deregulated in ccRCC. 

    8.3.1   “Actionable” Mutations 

 While the number of frequently mutated genes may be low, genome sequencing 
efforts may uncover rare, but “actionable,” mutations. Presently, the main class 
of actionable mutations is made up of activating mutations in protein kinases. 
Protein kinases are amenable targets for drug development, and because most inhib-
itors target the kinase domain, which has shared structural features, kinase 
inhibitors tend to be active against multiple kinases  [  165  ] . Thus, while an inhibitor 
might have not been developed to target a particular kinase, one may exist that 
is cross-reactive. 

 Unfortunately, kinases are infrequently mutated in ccRCC  [  166  ] . To date, the 
only oncogenic kinase found to be mutated and possibly activated in ccRCC is 
ERBB4 (our unpublished observations). ERBB4 is a receptor tyrosine kinase of the 
EGFR family, and ERBB4 activating mutations have been previously reported in 
melanoma  [  167  ] .  ERBB4  mutations are rare in ccRCC (1–2%). Nonetheless, should 
ERBB4 be a driver in ccRCC, inhibitors with cross-reactivity against ERBB4, such 
as lapatinib  [  168  ] , may prove effi cacious for this subset of patients. In addition, 
other kinases for which inhibitors are available, such as JAK2, have been found to 
be amplifi ed in ccRCC  [  162  ] . However, regions of amplifi cation in tumors tend to 
be large  [  169,   170  ] , and the driving gene(s) may be unclear.  
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    8.3.2   Turning Mutations into Druggable Targets 

 In contrast to activating mutations in oncogenes, whose protein products may 
serve as a target for chemical inhibitors, harnessing inactivating mutations in tumor 
suppressor genes for drug development is more complex. The identifi cation of 
effector pathways activated downstream such as VEGF/VEGFR2 in  VHL -defi cient 
tumors may help. This process requires biological insight and an understanding of 
the relative contribution of the particular effector pathway to tumor development. 

 Another approach, which may also be applicable to activating oncogenic muta-
tions, involves the identifi cation of dependencies created by the mutation. Mutations 
may engender a dependency on another pathway for survival, a pathway that is not 
normally essential for viability. Experiments in yeast suggest that the majority of 
nonessential genes (~80%) are involved in such synthetic lethal relationships with 
one or more genes  [  171  ] . Should a similar number of genes be involved in synthetic 
lethal interactions in humans, this could be a fertile ground for drug development. 
Several screens have been conducted to identify chemicals (or genes) that target 
pathways synthetic lethal with  VHL   [  76,   77  ] . Given the high frequency of pVHL 
inactivation in ccRCC, such efforts may result in a drug broadly active against 
ccRCC. In addition, inasmuch as synthetic lethal approaches target genetic defects 
specifi c to tumor cells, the drug should have a suitable therapeutic window. However, 
there may be tissues in which the gene (i.e.,  VHL ) is not normally expressed and this 
may cause toxicity.   

    8.4   Improved Model Systems 

 A bottleneck in oncology drug development results from the lack of preclinical 
models that faithfully recapitulate human cancer. More than 80% of anticancer 
drugs in clinical trials fail to reach FDA approval  [  172,   173  ] . The rate of failure for 
anticancer drugs is twice that of drugs in other categories  [  172  ] . The annual toll on 
patient lives and resources is enormous. Thus, current paradigms and preclinical 
models are clearly inadequate. 

 Most preclinical studies evaluate drugs on established tumor cell lines generated 
sometimes decades ago (i.e., NCI-60 panel)  [  174  ] . However, the value of the cell 
lines is compromised by the acquisition of new mutations  [  175,   176  ] . Indeed, the 
number of DNA copy number alterations in RCC cell lines is substantially larger 
than in patient tumors  [  169  ] . Cell lines may be injected into immunocompromised 
mice but the tumors they form tend to be poorly differentiated and dissimilar from 
the tumor from which they were originally derived  [  175–  178  ] . 

 Tumor samples when implanted directly in mice (tumorgrafts) may better pre-
serve the characteristics of patient tumors. The implantation of tumor fragements  
orthotopically in mice without disaggregation or additives results in tumors that 
reproduce the histological characteristics (Fig.  8.3 ) and molecular genetic altera-
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  Fig. 8.3    Schema of neoadjuvant everolimus trial in patients with advanced RCC with correlative 
studies       

  Fig. 8.4    Tumorgraft model of RCC. ( a ) Ultrasound of a tumorgraft growing orthotopically 
in a mouse kidney. ( b ) Pictures of a normal kidney in a mouse and the contralateral kidney with 
a RCC. ( c ,  d ) Histological tissue sections of tumor from the patient ( c ) and corresponding tumor-
graft ( d )       
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tions (mutations and DNA copy number alterations) of the corresponding tumors in 
patients [ 179 ]. Most importantly, tumorgrafts reproduce the drug sensitivity of RCC 
in the clinic. After PK studies to identify regimens mimicking human drug expo-
sures, tumorgraft growth was inhibited by drugs active against RCC but not by a 
control drug [ 179 ].  

 While growth in mice may select for most aggressive tumors (or most aggressive 
components within a tumor)  [  180  ] , tumorgrafts represent the most suitable preclinical 
model available. They reproduce the histology, molecular genetic alterations, and 
treatment responsiveness of RCC in patients. 

 Tumorgrafts may be used for the evaluation of novel agents, to explore drugs in 
different contexts (i.e., frontline vs. second line) and to prioritize drug combina-
tions. When a drug fails, tumorgrafts facilitate determining whether the failure 
was due to inadequate target inhibition (in which case, the target may still be valid) 
or whether it occurred despite adequate target inhibition. This determination, which 
is of utmost importance  [  181  ] , is not often possible in the clinic. Tumorgrafts can also 
be used to explore mechanisms of resistance and may be particularly helpful in 
elucidating resistance to agents that target the tumor microenvironment. In addi-
tion, tumorgrafts may be instrumental for the development of pharmacodynamic 
markers. 

 Tumorgrafts are helpful for a variety of other applications. An important obstacle 
to characterizing the genome of solid tumors is that tumors are an admixture of 
tumor and normal stroma. In contrast, the stroma in tumorgrafts is derived from the 
host  [  163  ] , and tumorgrafts represent nearly pure populations of human tumor 
cells. This is useful to determine whether a mutation is heterozygous or homozy-
gous. In our own experience, tumorgrafts were critical in determining that 20% of 
the protein-coding gene mutations we identifi ed were associated with loss of the 
wild-type allele.   In addition, tumorgrafts provide a means to study rare forms of 
cancer and a tumorgraft line has been generated from the pRCC-2 of the HLRCC 
patient described before.   Finally, tumorgrafts may be used for the evaluation of 
novel imaging modalities. We reported recently that acute  VHL  loss in the liver 
of the mouse is sufficient to inhibit mitochondrial respiration with a consequent 
increase in partial oxygen pressures as determined by MRI oximetry  [  75  ] . The 
availability of tumorgrafts would allow us to establish whether  VHL  loss in ccRCC 
similarly blocked mitochondrial oxygen consumption.  

    8.5   Genomic Medicine 

 Tumor genome sequencing may not only present candidates for drug therapy but is 
likely to pave the way for the identifi cation of prognostic and predictive markers. 
The discovery of a somatically acquired mutation in  TSC1  in a ccRCC from a 
patient whose disease progressed on frontline sunitinib after 3 months, but who 
remained progression-free on everolimus for 13 months  [  107,   160  ]  led us to 
hypothesize that TSC1 is a predictor of extraordinary responsiveness to mTORC1 
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inhibitors clinically. The prolonged tumor control with everolimus contrasted 
with both the rapid progression on sunitinib and a median progression-free interval 
on everolimus in the pivotal phase III clinical trial of 4 months  [  132  ] . While this 
represents a single case, there have been other reports of unusual responsiveness to 
mTORC1 inhibitors  [  182  ] , and we conjecture that these tumors may similarly have 
mutations in  TSC1  or other proximal mTORC1 regulators.   In addition, sequencing 
of the normal genome as a reference may provide information with respect to drug 
metabolism or even about haplotypes associated with drug responsiveness. 

 Establishing the clinical utility of cancer genome sequencing will be a challenge. 
One approach may involve clinical trials in which patients are randomized to 
treatment decisions based on genome sequencing data or decisions made without 
such information. The outcome of such a trial would depend, however, on the 
interpretation of the genomic information, and furthermore, unless genome-based 
decision algorithms were clearly laid out, the approach would not be transferable to 
other settings. Alternatively, as recently illustrated in a different setting  [  183  ] , 
patients may serve as their own control, and the effectiveness of genomic-based 
treatment decisions may be compared to outcomes of an immediately prior 
experimental, nongenomic-based regimen. However, this paradigm is subject to 
some of the same limitations.  

    8.6   Conclusions 

 Herein, I have attempted to present a vision for research translation and personal-
ized medicine. As is the case for drugs recently approved, future therapeutic devel-
opments are likely to result from a deeper understanding of the molecular genetics 
of RCC. Very often, the fi ndings from cancer genome sequencing studies will be 
novel and the signifi cance of the mutations unclear. Their evaluation will require 
functional studies and an integrated research translation program (see Fig.  8.5 ). The 
function of mutated genes can be explored through molecular and cellular biological 
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approaches and the consequences of gene mutation exploited in synthetic lethal 
chemical-genetic screens. These screens may result in chemical leads, which after 
optimization, could be evaluated in suitable animal models and perhaps subse-
quently in clinical trials.       
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